¿Cuántos tipos de plástico hay?

Objetos cotidianos de plástico.

El término plástico en su significado más general, se aplica a las sustancias de similares estructuras que carecen de un punto fijo de evaporación y poseen, durante un intervalo de temperaturas, propiedades de elasticidad y flexibilidad que permiten moldearlas y adaptarlas a diferentes formas y aplicaciones. Sin embargo, en sentido concreto, nombra ciertos tipos de materiales sintéticos obtenidos mediante fenómenos de polimerización o multiplicación semi-natural de los átomos de carbono en las largas cadenas moleculares de compuestos orgánicos derivados del petróleo y otras sustancias naturales.

Las macromoléculas, lineales o ramificadas, pueden estar colocadas, unas con respecto a otras, de forma diferente.

- Puede darse el caso de que se encuentren desordenadas, entrelazadas como un fieltro. Es lo que se llama el estado amorfo. Los plásticos amorfos son vítreos, transparentes y generalmente frágiles.

- Pueden estar alineadas, en claro paralelismo, como las cerillas en su caja. Pero no se sitúan así en toda su longitud, sino en tramos muy pequeños, que reciben el nombre de cristalitas (cuerpo sólido cuyos elementos constitutivos - átomos, iones o moléculas- están dispuestos de forma regular en las tres dimensiones). Las longitudes restantes de cada macromolécula se pliegan formando lazos o bucles.

Los plásticos parcialmente cristalinos son translúcidos u opacos, pero más resistentes al calor que los amorfos.

Los plásticos con macromoléculas lineales o ramificadas, pero no entrelazadas (reticuladas) pueden ser moldeados de manera reversible.

Por acción del calor, se reblandecen para adoptar la forma que se les quiera dar. Son los termoplásticos.

Los plásticos con macromoléculas tridimensionalmente reticuladas (entrelazadas) no pueden ser moldeados de manera reversible.

Plásticos termoendurecidos.


Para forzar la reticulación, los químicos introducen, en las macromoléculas originales, grupos reactivos de moléculas que se disponen a distancias regulares y que actúan como grapas entre las cadenas.

Cuando las macromoléculas forman una red de malla abierta, los plásticos resultantes son elásticos como la goma.Se les llama elastómeros.


Nota: Con el fin de favorecer el conocimiento de los distintos materiales plásticos, especialmente en el momento de su clasificación, la Sociedad de Industrias Plásticas de los Estados Unidos (SPI) ha difundido un código de identificación de uso corriente a nivel internacional, que es el utilizado en este tema.

Existen más de 100 tipos de plásticos, los más comunes son sólo 6 y se los identifica con un número dentro de un triángulo (símbolo de reciclaje) para efecto de facilitar su clasificación para el reciclado.



Polímeros termoplásticos. (También llamados pistómeros o termoplastos).


Son polímeros (lineales, ramificados o no), que de manera reiterativa se pueden reblandecer (plastificar) por la acción del calor y endurecer al enfriase. Pueden llegar a fundirse sin que tenga lugar su descomposición químico siempre que no se alcance una determinada temperatura, denominada de descomposición.

Están constituidos por macromoléculas líneales o ramificadas que, a partir de cierta temperatura, inferior a la de descomposición, deslizan entre sí de modo que el material adquiere una fluidez viscosa.

Para que un polímero tenga aplicación como termoplástico debe tener una temperatura de transición vítrea Tg (si se trata de un material amorfo), o una temperatura de fusión Tm (si se trata de un material cristalino), superior a la temperatura ambiente.

Por lo general los materiales termoplásticos presentan un buen conjunto de propiedades mecánicas, son fáciles de procesar, reciclables y bastante económicos. La principal desventaja deriva del hecho de que son materiales que funden, de modo que no tienen aplicaciones a elevadas temperaturas puesto que comienzan a reblandecer por encima de la Tg, con la consiguiente pérdida de propiedades mecánicas.

Poliolefinas. (polietileno, polipropileno, polibuteno, polisobutileno, etc.)


El polietileno es un termoplástico fabricado a partir del etileno (elaborado a partir del etano, uno de los componentes del gas natural) , en forma de gránulos o de polvo blanco. Sus propiedades técnicas depende de la masa molecular, la ramificación de la cadena y el grado de cristalinidad, por lo que el método de elaboración influye considerablemente, especialmente la presión.

Todos los polímeros derivados del etileno tienen una gran resistencia a los productos químicos , acidos , bases, aceites, grasas, disolventes ... Sin embargo, su resistencia es moderada para los hidrocarburos normales y clorados .

Debido a su gran facilidad de extrusion para film, los poliestilenos son muy utilizados para recubrimientos de otros materiales , papel, cartón, aluminio...y para embalajes.

El etileno, según la temperatura a que se someta puede transformarse en dos tipos de polimeros:


PEAD (HDPE) Polietileno de alta densidad

El polietileno de alta densidad es un termoplástico fabricado a partir del etileno a temperaturas inferiores a 70 oC y presión atmosférica (proceso Ziegler-Natta).

Polimeriza con estructura lineal (de tipo cristalino), y densidad comprendida entre 0,94 y 0 ́96 kg/dm.

Es muy versátil y se lo puede transformar de diversas formas: Inyección, Soplado, Extrusión, o Rotomoldeo.

USOS Y APLICACIONES:

El PEAD , polietileno de alta densidad, se utiliza para fabricar bolsas, cajas de botellas, tuberías, juguetes, cascos de seguridad laboral.

Gracias a su estructura lineal sirve para cuerdas y redes de pesca, lonas para hamacas La resistencia térmica permite usarlo para envases que deban ser esterilizados en autoclave (leche , sueros ..)

También en construcción se utiliza en tuberías para gas, telefonía, agua potable, minería, drenaje y uso sanitario.

CARACTERISTICAS:

Resistente a las bajas temperaturas - Irrompible - Impermeable - No tóxico.

A temperaturas de unos 170 o centígrados y 1.400 atmósferas de presión el etileno se transforma en un polímero con aspecto de polvillo blanco, estructura muy ramificada (amorfa, algunos de los carbonos, en lugar de tener hidrógenos unidos a ellos, tienen asociadas largas cadenas de polietileno) y densidad comprendida entre 0' 91-0,93 kg/dm.

USOS Y APLICACIONES:

El PEBD , polietileno de baja densidad, se utiliza para fabricar bolsas flexibles , embalajes industriales , techos de invernaderos agrícolas... También gracias a su resistencia dieléctrica se utilizan para aislante de cables eléctricos.

Recubrimiento del hormigón fresco, evitando la evaporación prematura del agua y preservándolo de las heladas. Revestimiento de encofrados, facilitando el desmoldeo y dando un perfecto acabado al cemento.

CARACTERISTICAS:

Gran flexibilidad, extraordinaria resistencia química y dieléctrica, resistente a las bajas temperaturas, irrompible, impermeable y no tóxico. Es versátil, barato y fácil de fabricar. Se transforma por inyección, soplado, extrusión, o rotomoldeo.

PP Polipropileno


Es un termoplástico que se obtiene por polimerización del propileno. Los copolímeros se forman agregando etileno durante el proceso.

USOS Y APLICACIONES:

Soporta bien temperaturas cercanas a los 100 oC por lo que se utiliza para tuberías de fluidos calientes .

Piezas de automóviles (parachoques) y electrodomésticos, cajas de baterías , jeringas desechables, tapas en general, envases, baldes, todo tipo de cartelería interior y exterior.

Al tener una estructura lineal se utiliza para rafias y monofilamentos , fabricación de moquetas , cuerdas , sacos tejidos , cintas para embalaje, pañales desechables.

CARACTERISTICAS:

Plástico rígido de alta cristalinidad y elevado Punto de Fusión, excelente resistencia química y baja densidad (la más baja de todos los plásticos). Al adicionarle cargas (talco, caucho, fibra de vidrio...), se refuerzan sus propiedades hasta transformarlo en un polímero de ingeniería. Muy sensible al frío y a la luz ultravioleta (envejece rápidamente), por lo que necesita estabilizantes a la luz.

Barato, resistente a la temperatura, y no tóxico.

Es transformado en la industria por los procesos de inyección, soplado y extrusión/termoformado. Fácil manipulado, se puede cortar, perforar y troquelar.

Polimerizados del estireno. (poliestirenos, copolímeros ABS y ASA, etc.)


PS Poliestireno

El poliestireno estructuralmente, es una larga cadena hidrocarbonada, con un grupo fenilo unido cada dos átomos de carbono.

Las materias primas para la fabricación del estireno son el etileno y el benzeno

Hay tres clases de poliestireno:

- PS Cristal: Es un polímero de estireno monómero (derivado

del petróleo), cristalino y de alto brillo.

- PS Alto Impacto: Es un polímero de estireno monómero con oclusiones de Polibutadieno que le confiere alta resistencia al impacto.

- PS expandido que es una espuma.

Es Termoplástico y fácilmente moldeable a través de procesos de: Inyección, Extrusión/Termoformado, Soplado.



USOS Y APLICACIONES:

Se usa en envases, vasos, platos y cubiertos desechable, neveras portátiles, máquinas de afeitar desechables, juguetes, cassettes, aislantes térmicos y acústicos.


CARACTERISTICAS:

Ignífugo - No tóxico - Transparente - Irrompible - Fácil limpieza. Fácil de serigrafiar. Fácil de manipular, se puede cortar, taladrar, perforar, troquelar el ABS fue desarrollado para conseguir altas fluideces y rigidez a la vez Acrilonitril que un buen comportamiento al impacto, caracteristicas que no cumplía butadieno-estireno.

Se podría definir el ABS como un copolímero del PS con cauchos. Nace de la polimerización de tres elementos:


- El acrilonitrilo aporta buena resistencia química, brillo, resistencia térmica y resistencia al desgaste. - El butadieno le confiere buen comportamiento al impacto. - El estireno aporta moldeabilidad y buena estabilidad dimensional (el Termoplástico contenido varía entre un 65 y 80%).

CARACTERISTICAS:

Buena resistencia al impacto (a altas y bajas temperaturas). Excelente rigidez. Excelente brillo y aspecto superficial. Resistencia al rayado. Buena resistencia a los agentes químicos. Excelente procesabilidad. Existe ABS para cromar.

USOS Y APLICACIONES:

Eléctrico: sus aplicaciones van desde aparatos de fax, carcasas de los monitores de ordenador y de aparatos eléctricos en general, enchufes.

Automóvil: se utilizan tipos anticalóricos reforzados con fibra de vidrio, cromables, etc. en retrovisores, piezas eléctricas, parrillas de radiadores, en los mandos de control.


Acrilonitrilo-estireno. SAN. Termoplástico.


El SAN fue desarrollado para conseguir altas fluideces y rigidez a la vez que un buen comportamiento al impacto y transparencia, caracteristicas que no cumplía el PS ni el ABS.

Se podria definir como un PS mezclado con cauchos, o un copolímero de estireno/acrilonitrilo.

CARACTERISTICAS:

Resistente a altas temperaturas y al ataque de agentes químicos. Excelentes propiedades mecánicas Fácil procesabilidad Muy buena transparencia Buena estabilidad dimensional.

USOS Y APLICACIONES:

Industria: Encendedores: por su transparencia y buena resistencia al ataque de los agentes químicos. Cubre lámparas, por su transparencia y buenas propiedades mecánicas, pudiendo ser aditivado contra los rayos UV. Embalajes de todo tipo, como recipientes de cocina que requieran aptitud alimentaria, transparencia, y o buen comportamiento a bajas temperaturas. Piezas interiores de neveras. Ventiladores de aire acondicionado.

Electricidad: Carcasas de secadoras, piezas de aparatos de TV, cajas de baterias. Aparatos de vídeo, se utiliza por su extraordinaria rigidez y elevada temperatura de distorsión.

Plásticos de estireno-butadieno. SBP. Termoplástico.


- Copolímeros de estireno-butadieno. También llamados hules sintéticos. Contienen un 25% de estireno y un 75% de butadieno y se utilizan en la fabricación de llantas, espumas, aislamiento de alambres y cables eléctricos, mangueras.

Los copolímeros de estireno-butadieno con mayor contenido de butadieno, hasta de 60%, se usan para hacer pinturas y recubrimientos ahulados. Para mejorar la adhesividad, en ocasiones se incorpora el ácido acrílico o los ésteres acrílicos, que elevan la polaridad de los copolímeros.

- MBS: Se obtienen injertando metacrilato de metilo o mezclas de metacrilato y estireno, en las cadenas de un hule de estireno-butadieno.

- Acrílicos: Copolímeros de metacrilato-butilacrilato-estireno o de metacrilato-hexilacrilato-estireno.

- Otros copolímeros importantes del estireno, se realizan polimerizando en suspensión, estireno en presencia de divinil-benceno, para obtener materiales entrecruzados, que por sulfonación y otras reacciones químicas se convierten en las conocidas resinas de intercambio iónico.

- CPE. Los polietilenos clorados se obtienen clorando polietileno de alta densidad con 30% a 40% de cloro. Tienen baja cristalinidad y baja temperatura de transición vítrea.

- EVA. Copolímero del etileno y acetato de vinilo con 30% a 50% del acetato, posee propiedades elastoméricas.


Polímeros halogenados. (policloruros de vinilo, copolímeros vinílicos, politetrafluoretileno o teflón, polifluoruro de vinilo, etc.).


Se produce a partir de dos materias primas naturales: gas 43% y sal común (*) 57%.

Estructuralmente, el PVC es similar al polietileno, con la diferencia que cada dos átomos de carbono, uno de los átomos de hidrógeno está sustituido por un átomo de cloro.

A este polímero termoplástico es necesario añadirle aditivos, plastificantes, elastificantes, cargas y otros polímeros para que adquiera las propiedades que permitan su utilización en las diversas aplicaciones .

Así, puede ser flexible o rígido; transparente, translícido o completamente opaco; frágil o tenaz; compacto o espumado .

El PVC rígido no lleva aditivos plastificantes . El flexible o plastificado, sí los lleva .

USOS Y APLICACIONES:

Envases. Perfiles para marcos de ventanas, puertas. Tuberías de desagües, mangueras, aislamiento de cables. Juguetes, envolturas para golosinas, películas flexibles para envasado, papel vinílico (decoración)... Objetos termoconformados industriales y domésticos. Tableros para mesas de trabajo y estanterías para laboratorios. Aparatos electrodomésticos.

CARACTERISTICAS:

Su capacidad para admitir todo tipo de aditivos permite que pueda adquirir propiedades muy distintas y teniendo en cuenta su precio relativamente bajo le hace ser un material muy apreciado y utilizado para fabricar multitud de productos.

Ignífugo (con altas temperaturas los átomos de cloro son liberados, inhibiendo la combustión).

Resistente a la intemperie, no tóxico, impermeable y no quebradizo.

Buenas propiedades de aislamiento.

Fácil de manipular, se puede cortar, taladrar, clavar, enroscar, perforar, pegar.

Resistente a los agentes químicos y corrosivos.


Politetraflúoretileno. PTFE. Termoplástico

Resinas fluoruratas son materiales termoplásticos producidos en los Estados Unidos a partir del 1950 y han tenido un gran éxito por sus características especialísimas. La más importante de las resinas fluorurate es el politetrafluoroetileno que se suministra generalmente en forma de semielaborado, sucesivamente trasformado con elaboración mecánica y al utensilio.

Las resinas fluoruratas tienen diferentes aplicaciones que van desde los equipos para laboratorio a las fibras y a las películas especiales. Las características autolubricantes y antiroce rinden precioso el politetrafluoroetileno en la fabricación de engranajes industriales, prótesis quirúrgicas, revestimientos de baterías de cocina. Se emplea también en la fabricación de bombas, válvulas, filtros y elementos para vehículos espaciales.

Polifluoruro de vinilo. PVF. Termoplástico.


Ésteres de polivinilo y polimetacrilo. (poliacetato de vinilo, polimetilmetacrilato o plexigás; vidrio acrílico, etc.).

Polimetacrilato de metilo. PMMA.

Termoplástico.

Comercializado bajo la marca Plexiglas.

CARACTERISTICAS:

Gran transparencia , además de elevada rigided y tenacidad , buena resistencia química , fácil moldeo , y buen comportamiento dieléctrico.

Se pueden obtener planchas por colada entre dos planchas de vidrio para después ser mecanizadas .

Para aumentar la dureza y evitar el rayado de las lentes se les dá un tratamiento de fluoración

USOS Y APLICACIONES:

Parabrisas y ventanas de aviones, portillos de barcos , claraboyas .

Al ser un material muy transparente, se utiliza también en óptica, lentes de máquinas fotográficas, gafas.

Óxidos, sulfonas y similares. Polímeros con cadena de constitución mezclada – heteropolímeros.


PET Polietileno Tereftalato

Se produce a partir del Ácido Tereftálico y Etilenglicol, por policondensacion; existiendo dos tipos: grado textil y grado botella.

USOS Y APLICACIONES:

Envases de gaseosas, aceites, agua mineral, salsas...( Para el grado botella se lo debe post condensar, existiendo diversos colores para estos usos). Fibras textiles, Cintas de vídeo y audio, películas radiográficas... Geotextiles (telas para pavimentación).

CARACTERISTICAS:

Barrera a los gases - Transparente - Irrompible - Liviano - No tóxico.

Politereftalato de butileno. PBT. Termoplástico.


Se fabrica policondensado en la masa éster dimetílico del ácido tereftálico con 1,4-butadonil .

CARACTERISTICAS:

Alta resistencia a esfuerzos permanentes Alta indeformabilidad al calor, especialmente en los tipos reforzados con fibras de vidrio Alta dureza Buen comportamiento deslizante y frente al desgaste Alta estabilidad dimensional y de forma (bajo coeficiente de dilatación térmica y escasa absorción de agua) Buenas características eléctricas Gran resistencia a los agentes químicos

USOS Y APLICACIONES:

Industria eléctrica y electrónica, debido a su buen comportamiento aislante, indeformabilidad al calor, estabilidad dimensional, resistencia a los agentes químicos y efectos ignífugos. Se emplea tanto en el sector de las piezas aislantes para extintores como en aislamientos primarios.

Electrodomésticos, en los que cumple con las especificaciones adicionales en cuanto a indeformabilidad al calor, características aislantes, resistencia a los agentes químicos y al agrietamiento por tensión, así como calidad superficial.

Mecánica de precisión y maquinaria, ruedas dentadas, cojinetes y otros elementos deslizantes gracias a su buen comportamiento deslizante y resistencia al desgaste

Industria del automovil por su rigidez, indeformabilidad al calor, decorabilidad y resistencia a la intemperie. Se emplea tanto en aplicaciones interiores como exteriores. El policarbonato toma su nombre de los grupos carbonato en su Policarbonato. PC.

También se denomina policarbonato de bisfenol A, porque se elabora a partir de bisfenol A y fosgeno.

Es amorfo y transparente , aguanta una temperatura de trabajo hasta 135 oC , y tiene buenas propiedades mecánicas , tenacidad , y resistencia química .

CARACTERISTICAS:

Virtualmente irrompible. Es 250 veces más resistente al impacto que el vidrio. Excelente comportamiento ante el fuego. Excelente transmisión de luz. Poco peso, menos de la mitad que el vidrio. (Considerando igual espesor). Curvable en frío. No propaga la llama. Aislante térmico (Valor K 2,7 en 6 mm.) Aislante acústico (clasificación STC=31 dB en 6 mm.)

USOS Y APLICACIONES:

Carcasas de protección para maquinaria y equipos peligrosos, viseras para protección de la cara. Tapas para cuadros eléctricos y de mandos, cristaleras irrompibles para casetas de obra, coches blindados. Protección antichoque para iluminación de seguridad y emergencia. Señalización urbana y de carretera, letreros, protección de luminosos de neón.

Poliamidas. PA.


1.930 se descubrió un polímero con el que se podían hacer hebras de gran resistencia, era la primera poliamida 6.6, que se comercializó con el nombre de Nylon .

En 1.938 se obtuvo la polimerización de la PA 6, que se comercializó con el nombre de Perlon.

Se denominan poliamidas, debido a los característicos grupos amida en la cadena principal. Las proteínas (como la seda), también son poliamidas.


CARACTERISTICAS:

Las resistencia poliamidas a la tracción presentan entre unas 400 - propiedades 600 kg/cm.

Bajo peso específico entre 1' 04 y 1' 15. Fácil moldeo Resistencia a temperaturas de trabajo de hasta 1200 oC . Rigidez y resistencia al desgaste, deformaciones y a elevadas temperaturas. Buena resistencia química salvo a ácidos concentrados. Buenas propiedades mecánicas y eléctricas.

Tienen un inconveniente , su higroscopidad . Absorven agua en un porcentaje variable , esto hace que disminuyan sus propiedades mecánicas , y aumentan el volumen al hincharse .

USOS Y APLICACIONES:

Piezas que exigen buen coeficiente de rozamiento y buena resistencia al desgaste. Piezas que precisen mecanizado con torno automático. Piezas técnicas sometidas a choques, sacudidas e inversiones de sentido. Rodillos y cintas transportadoras. Cojinetes, piezas sometidas a frotamiento. Engranajes, elementos de transmisión.

Polímeros termoestables.


También llamados durómeros o duroplastos. Son aquellas materias poliméricas que por la acción del calor o mediante endurecedores apropiados, endurecen de forma irreversible y al fundirse se descomponen químicamente. Están formados por macromoléculas reticuladas en el espacio, que en el proceso de endurecimiento, o de curado, se reticulan más estrechamente.

A partir de materias primas de bajo peso molecular se forman, en una primera fase, un producto intermedio (prepolímero), de peso molecular intermedio, no reticulado o muy poco y por tanto todavía capaz de fundir (y por tanto de rellenar un molde). La reticulación espacial que da lugar a la formación de la macromolécula termoestable tiene lugar por reacción química (curado) durante el moldeo de la pieza, es decir, durante el proceso de transformación.

Puesto que no funden y no reblandecen son materiales que presentan muy buenas propiedades a elevadas temperaturas. Junto con su alta resistencia térmica presentan alta resistencia química, rigidez, dureza superficial, buena estabilidad dimensional, etc.

Los acabados son pobres comparados con los de la mayoría de los termoplásticos; por lo general las resinas termoplásticos son bastantes opacas y en muchos casos presentan cierta coloración amarillenta.

Sin embargo el empleo de estos materiales ha ido disminuyendo en los últimos años, pues requieren métodos de transformación lentos debido a que la reacción de polimerización tiene lugar durante la transformación.

Fenoplastos o resinas fenólicas (bakelitas, novolacas, resitas).


Fenol-formol. PF. Termoestable.

Las resinas fenólicas son las mas antiguas y aún hoy las mas usadas entre las resinas termofraguantes. Las desarrolló, como es sabido, L. H. Baekeland en el 1909 y tuvieron un gran éxito sobre todo en el periodo entre las dos guerras mundiales. Las masas de estampado fenólico se usan para fabricar elementos de la industria eléctrica, en radio, en televisión, en teléfonos y en la industria automovilística; además se fabrican piezas para el sector de los electrodomésticos, en el sector aerospacial y en la defensa.

Aminoplasto o resinas de urea o melanina con formaldehído.


Urea-formol. UF. Termoestable. Son compuestos termofraguantes que se obtienen mediante la reacción de a urea con la formaldehído. Alrededor de 1929 estas resinas habían alcanzado un apreciable desarrollo comercial gracias a sus propiedades y al bajo costo. Como las melanímicas. Tienen el aspecto de un polvo finísimo blanco que se elabora generalmente por estampado a compresión dentro de un molde y con la acción del calor. El principal empleo de las resinas uréicas es el campo de los adhesivos y de las colas; como masas de estampado se utilizan para producir platos, partes de electrodomésticos, componentes eléctricos, teléfonos, aparatos radio, muebles.

Melamina-formol. MF. Termoestable. Las resinas melamínicas, como las uréicas, pertenecen al grupo de compuestos termofraguantes llamados aminoplasta. Las melamínicas se produjeron en forma industrial a partir del final de los años Treinta. Tienen una importancia fundamental en la fabricación de laminados y también para vajillas, platos, partes de electrodomésticos, muebles, artículos decorativos y elementos de aislamiento.

Otras resinas.


Resinas reactivas, también denominadas resinas de reacción líquidas. Su constitución química es tal que pueden reticularse bajo la acción de un catalizador o de un endurecedor y pasan del estado líquido al sólido. Esta reacción se produce sin necesidad de aportación de calor y, frecuentemente, exotérmica.

A la resina de base se le suele añadir aditivos modificadores, cargas neutras u otras materias para conseguir algún objetivo concreto; la mezcla puede ser reforzada con fibras de diversa índole. Se utilizan como adhesivos, conglomerantes de áridos, resinas de colada y como material para inyección de obras de fábrica o del terreno.

Los tipos principales de resinas reactivas son:

- Resinas epoxídicas: Resinas epoxi.

Resinas epoxi-acrílicas y otras. - Resinas de poliéster no saturado. - Resinas de metilmetacrilato (furánicas). - Resinas de isocianato (poliuretano).

RESINAS EPOXI. EP.  Termoestable.


Las resinas epoxi son resinas sintéticas caracterizadas por poseer en su molécula uno o varios grupos epoxi que pueden polimerizarse, sin aportación de calor, cuando se mezclan con un agente catalizador denominado "agente de curado" o "endurecedor". Por sí solas no tienen aplicación práctica.

La inmensa mayoría de las resinas epoxi empleadas en la construcción son productos de condensación que resultan de las epiclorhidrina con compuestos de varios grupos fenólicos, generalmente con el difenol-propano, conmúnmente conocido con el nombre de bisfenol A.

CARACTERISTICAS:

Los sistemas epoxi se componen de dos elementos principales: resina y endurecedor, a los que pueden incorporarse agentes modificadores (diluyentes, flexibilizadores, cargas...), para modificar alguna propiedades físicas o químicas del sistema de resina o abaratarlo.

- Resinas de base.

Las resinas epoxi pueden clasificarse en: - Éteres glicéricos. - Esteres glicéricos. - Aminas glicéricas. - Alifáticas lineales. - Cicloalifáticas. - Endurecedores.

El endurecimiento de una resina puede hacerse con un agente (una molécula epoxi se une a otra en presencia del catalizador) o con un endurecedor (el reactivo endurecedor o agente de curado se combina con una o más moléculas de resina).

Los agentes catalizadores más empleados son las bases fuertes tales como aminas terciarias o materiales fuertemente aceptores de protones, como el trifluoruro de boro.

Los reactivos endurecedores pueden clasificarse en:

- Agentes de curado en frío. Reaccionan con las resinas a temperaturas ordinarias o bajas, en atmósferas particularmente húmedas; de este grupo son: las aminas alifáticas primaria, las poliaminas, las poliamidas y los polisocianatos.

- Agentes de curado en caliente. Los más empleados son los anhídridos orgánicos, las aminas primarias y aromáticas y los catalizadores, que son inactivos a temperaturas ordinarias, pero que se descomponen en componentes activos al calentarlos.

USOS Y APLICACIONES:

Se emplean para coladas, revestimientos, estratificados, encapsulados, prensados, extrusionados, adhesivos y en otras aplicaciones de conglomeración de materiales.

Poliésteres.


Las resinas de poliester constituyen una familia bastante diferenciada y compleja de resinas sintéticas que se obtienen con una grande variedad de materias primas de partida. Las resinas poliester insáturas son líquidos más o menos viscosos de color amarillo pajizo que endurecen con el añadido de catalizadores.

Su robusteza, flexibilidad y rigidez pueden ser modificadas con el añadido de aditivos, refuerzos que normalmente pueden ser fibra de vidrio o de carbono. Se emplean en la construcción civil, para conducturas, compuertas, puertas y ventanas, encofrado, vidrios, paneles decorativos; en la náutica más del noventa por ciento de los barcos está construido con resinas poliester reforzado y hoy en día se fabrican también unidades de guerra como por ejemplo los dragaminas y botes para el servicio guardacostas.

En la industria de los transportes se fabrican con las resinas de poliester reforzado partes de autobuses, furgones, máquinas agrícolas, roulotte, vagones de ferrocarril. Hay numerosos otros empleos que van desde los botones a los trineos, a los aislantes eléctricos.

Poliuretanos y similares.


- El poliuretano es un material plástico que nace de la reacción química entre dos componentes líquidos: el Poliol y el Isocianato. Intervienen además:

Catalizadores: Se utilizan para acelerar o retardar la reacción entre el poliol y el isocianato y, por tanto, poder controlar la formación de la espuma.

Aditivos y cargas: Son materiales que por sus características, mejoran determinadas propiedades físicas y mecánicas de la espuma de poliuretano. Algunos de ellos son: los antioxidantes, los blanqueadores ópticos, los estabilizadores térmicos, etc.

Agentes espumantes: Los agentes espumantes debido a sus propiedades físicas son excelentes hinchantes y los encargados de dar volumen. Estos agentes se evaporan en forma de gas tras la expansión de la espuma debido a su bajo punto de ebullición y utilizando el calor generado por la reacción poliol-isocianato.

Dependiendo de la composición de la mezcla poliol-isocianato, y de su densidad, obtendremos poliuretanos con diferentes características:

- espuma rígida.

- espuma rigida para aislamiento

Los sistemas de poliuretano vienen utilizándose en el sector de la construcción desde hace más de 25 años en todo el mundo, tanto para el aislamiento térmico como para la impermeabilización. Y su utilización sigue en alza debido a la posibilidad de impermeabilizar y aislar con rapidez de ejecución, sin intervenir en el proceso normal de la obra. No obstante, existen muchas otras ventajas que a continuación se presentan.


Características:

Impermeabilidad y aislamiento térmico en una sola operación. Material con el más bajo coeficiente de conductividad térmica (l = 0,027 W/mo C). Ligereza de peso disminuyendo la carga de la estructura. Buena resistencia a la compresión (de 1 a 3 Kg/cm2), lo que permite su utilización en azoteas transitables con acabado tradicional. Eliminación de las condensaciones en general y, en especial, las que se presentan en superficies metálicas. Evita la formación de humedades por la condensación, ya que establece una barrera térmica que impide que el tabique interior alcance bajas temperaturas y que se condense la humedad ambiente del interior.

- espuma flexible (Asientos para coches,

- un elastómero( Pavimentos, Adhesivos y ligantes, Suelas, ruedas, juntas

- espuma semirrígida (Asientos para bicicletas, motos, sillines para tractores, apoyabrazos, volantes, parasoles, parachoques de coches y autobuses. Sillas de oficina, asientos.

- Pinturas y barnices de poliuretano

Proyección: La mezcla sale de la máquina perfectamente homogeneizada y finamente pulverizada. La mezcla se aplica sobre el sustrato con equipos específicos, sin interrupciones. En este método se utilizan sistemas de reactividad controlada para obtener la fase de expansión y endurecimiento de la espuma rápidamente. La proyección se utiliza en la impermeabilización y en la aplicación de aislamientos sobre superficies inclinadas, verticales y horizontales, sin producirse deslizamiento ni goteo del material.

Son polímeros obtenidos mediante la poliadición de los isocianato y de Poliuretanos. PU.
los poliol. Se llaman así porque en su cadena principal contienen enlaces uretano.

Es un excelente plástico de uso industrial que abarca un abanico de durezas tan amplio, que puede alcanzar los valores de los cauchos más Termoplástico.

blandos y los de los poliamidas más duras, manteniendo siempre su gran elasticidad.

CARACTERISTICAS:

Resistente a aceites y grasas. Resistente a la rotura. Gran elasticidad. Resistente a la abrasión. Excelente amortiguador de ruidos y vibraciones. Excelente comportamiento frente a la deformación por presión.

USOS Y APLICACIONES:

Componen la familia más versátil de polímeros que existe. Pueden ser elastómeros, pinturas, fibras y adhesivos.

Se utilizan en forma flexible para fabricar cojines, colchones, muebles, revestimientos de tejidos

En forma rígida para empleos en la industria automovilística, construcción civil, amueblado.

Zapatas guía de ascensores por su gran resistencia a la abrasión, grasas y aceites. Apoyos de separación y apilamiento de maquinaria y matrices pesadas. Ruedas para carretillas elevadoras. Poleas y guías para cables. Rodillos para industria textil. Regletas para serigrafía. Troqueles y contra - troqueles para la estampación.

Son un aislante térmico y acústico de óptima calidad.

Polímeros silicónicos

Siliconas (SI).

Termoplástico.

Las siliconas son polímeros inorgánicos (no contienen átomos de carbono en su cadena principal).

Esta es una cadena alternada de átomos de silicio y de oxígeno. Cada silicona tiene dos grupos unidos a la misma y éstos pueden ser grupos orgánicos.

CARACTERISTICAS:

Las siliconas constituyen buenos elastómeros porque la cadena principal es muy flexible. Los enlaces entre un átomo de silicio y los dos átomos de oxígeno unidos, son altamente flexibles. El ángulo formado por estos enlaces, puede abrirse y cerrarse como si fuera una tijera, sin demasiados problemas. Esto hace que toda la cadena principal sea flexible.

USOS Y APLICACIONES:

El tamaño de los polímeros y el grado de entrecruzamiento pueden regularse según las propiedades que se desee en la silicona.

Las siliconas lineales son muy resistentes al calor y su viscosidad apenas varía con la temperatura, por lo que tienen una gran aplicación como lubricantes (aceites multigrado) y líquidos para frenos.

Las siliconas entrecruzadas pueden vulcanizarse obteniéndose caucho de silicona, o bien resinas sólidas, que tienen numerosas aplicaciones por su resistencia al calor y a los agentes químicos, así como por sus propiedades aislantes.

Otra propiedad importante de las siliconas es que repelen el agua, por lo que se utilizan mucho para fabricar tejidos o papeles impermeables, así como para recubrir con una fina capa los aisladores utilizados en electrónica.

Polímeros elastómeros: Cauchos y gomas.


Elastómeros, son sustancias constituidas por macromoléculas líneales unidas entre si transversalmente, por puentes de enlace (reticulación suelta).

En los elastómeros o cauchos las cadenas de polímero se encuentran enrolladas y retorcidas de forma arbitraria, al azar, lo que les confiere gran flexibilidad para permitir que el material sea capaz de soportar deformaciones muy grandes.

El proceso de curado por el que estos polímeros son entrecruzados se suele conocer como vulcanización.

Son materiales muy tenaces, resistentes a aceites y grasas, al ozono, y presentan buena flexibilidad a bajas temperaturas; de hecho, todos los elastómeros tiene temperaturas de transición vítrea inferiores a la temperatura ambiente. Presentan, sin embargo, algunas de las desventajas de los termoestables: requieren un procesado lento, lo que consume grandes cantidades de tiempo y energía.

Esto ha llevado a que en los últimos años se haya desarrollado un grupo de elastómeros conocidos como elastómeros termoplásticos (TR). Estos elastómeros termoplásticos pueden estar reticulados de forma química o física.

- Químicamente: la reticulación se deshace a temperaturas altas, convirtiéndose en termoplásticos amorfos o semicristalinos que, cuando la temperatura sigue aumentando, adquieren consistencia termoplástica. Tiene, por tanto el comportamiento de uso de los elastómeros y el comportamiento de fusión de los termoplásticos.

- Físicamente: consiste por lo general en una mezcla de una matriz termoplástica, generalmente PP, mezclada con un caucho, por lo general EPDM. En este caso la matriz termoplástica permite que el material funda y sea moldeado, mientras que las partículas de caucho contribuyen dando tenacidad y elasticidad al material.

En general la capacidad de deformación de los elastómeros termoplásticos es menor que la de los demás elastómeros (elastómeros permanentes).

¿Y cómo es la formación de las macromoleculas.?

Macromoleculas

Existen diversos procesos para unir moléculas pequeñas con otras para formar moléculas grandes. Su clasificación se basa en el mecanismo por el cual se unen estructuras monómeras o en las condiciones experimentales de reacción.

Polimerización por adicción.

En las reacciones de adición, varias unidades monoméricas se unen, en presencia de un catalizador, como resultado de la reorganización de los enlaces C=C de cada una de ellas.

- Adición de moléculas pequeñas de un mismo tipo unas a otras por apertura del doble enlace sin eliminación de ninguna parte de la molécula (polimerización de tipo vinilo).

 - Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un anillo sin eliminación de ninguna parte de la molécula (polimerización tipo epóxido).

- Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un doble enlace con eliminación de una parte de la molécula (polimerización alifática del tipo diazo).

- Adición de pequeñas moléculas unas a otras por ruptura del anillo con eliminación de una parte de la molécula (polimerización del tipo aminocarboxianhidro).

- Adición de birradicales formados por deshidrogenación (polimerización tipo p-xileno).

Los polímeros vinílicos son polímeros obtenidos a partir de monómeros vinílicos; es decir, pequeñas moléculas conteniendo dobles enlaces carbono-carbono.

- El polietileno se obtiene a partir del monómero etileno. Cuando polimeriza, las moléculas de etileno se unen por medio de sus dobles enlaces, formando una larga cadena de varios miles de átomos de carbono conteniendo sólo enlaces simples entre sí.

Los polímeros vinílicos más sofisticados se obtienen a partir de monómeros en los cuales uno o más de los átomos de hidrógeno del etileno han sido reemplazados por otro átomo o grupo atómico.

Poli(cloruro de vinilo)

- Reemplazando dos átomos de hidrógeno, sobre el mismo átomo de carbono, podemos obtener poliisobutileno, que es un tipo de caucho.

Poli (metacrilato de metilo)

- No muchos monómeros en los cuales se hayan reemplazado los átomos de hidrógeno en ambos átomos de carbono son capaces de polimerizar. Pero un polímero que se obtiene a partir de un monómero sustituido en ambos átomos de carbono es el politetrafluoroetileno, denominado Teflon.

Los polímeros isómeros son polímeros que tienen esencialmente la misma composición de porcentaje, pero difieren en la colocación de los átomos o grupos de átomos en las moléculas.

Polimerización por condensación.

En la reacción de condensación, los monómeros se combinan con la formación y pérdida de moléculas pequeñas, como agua, alcohol, etc.
- Formación de poliésteres, poliamidas, poliéteres, polianhidros, etc., por eliminación de agua o alcoholes, con moléculas bifuncionales, como ácidos o glicoles, diaminas, diésteres...

- Formación de polihidrocarburos, por eliminación de halógenos o haluros de hidrógeno, con ayuda de catalizadores metálicos o de haluros metálicos.
- Formación de polisulfuros o poli-polisulfuros, por eliminación de cloruro de sodio, con haluros bifuncionales de alquilo o arilo y sulfuros alcalinos o polisulfuros alcalinos.

Homopolímeros y Copolímeros
- Homopolimeros: son polimeros que contienen una sola unidad estructural (polietileno, polipropileno). Además, contienen cantidades menores de irregularidades en los extremos de la cadena o en ramificaciones.

- Copolímeros: contienen varias unidades estructurales, como es el caso de algunos muy importantes en los que participa el estireno.
Las diferentes combinaciones de monómeros se realizan para modificar las propiedades de los polímeros y lograr nuevas aplicaciones. Lo que se busca es que cada monómero imparta una de sus propiedades al material final; así, por ejemplo, en el ABS, el acrilonitrilo aporta su resistencia química, el butadieno su flexibilidad y el estireno imparte al material la rigidez que requiera la aplicación particular.

No solo cambian las propiedades al variar las proporciones de los monómeros, sino también al variar su posición dentro de las cadenas.

Las mezclas físicas de polímeros, que no llevan uniones permanentes entre ellos, también constituyen a la enorme versatilidad de los materiales poliméricos. Son el equivalente a las aleaciones metálicas.

Concepto de Tacticidad

El término tacticidad se refiere al ordenamiento espacial de las unidades estructurales.

El mejor ejemplo es el polipropileno, que antes de 1955 no tenía ninguna utilidad. En ese año, Giulio Natta en Milán, utilizó para hacer polipropileno, los catalizadores que Karl Ziegler había desarrollado para el polietileno. Esos catalizadores, hechos a base de cloruro de titanio y tri- alquil-aluminio, acomodan a los monómeros de forma que todos los grupos metilos se sitúan al mismo lado en la cadena.

En esta forma, Natta creó el polipropileno isotáctico, que tiene excelentes propiedades mecánicas. Hasta ese momento, con los procedimientos convencionales, sólo se había podido hacer polímeros atácticos, sin regularidad estructural.

El polipropileno atáctico es un material ceroso, con pésimas propiedades mecánicas.

Otros catalizadores permiten colocar los grupos alternadamente, formando polímeros que se llaman sindiotácticos, los cuales, como los isotácticos, tienen muy buenas propiedades.

¿Qué son los monómeros y polímeros?

Polímeros


La materia esta formada por moléculas que pueden ser de tamaño normal o moléculas gigantes llamadas polímeros.
La unidad de bajo peso molecular es el monómero: Molécula, generalmente de la química orgánica, capaz de combinarse con moléculas de su misma naturaleza para formar un producto de peso melecular muy elevado, denominado polímero.
Los polímeros (del griego poly, muchos; meros, parte, segmento), se producen por la unión de cientos de miles de moléculas pequeñas (monómeros) que forman enormes cadenas de diferentes formas. Pueden pertenecer a la química inorgánica (cemento, porcelana, vidrio, etc.) o a la química orgánica (proteínas, grasas, propilenos, etc.)
Si el polímero es rigurosamente uniforme en peso molecular y estructura molecular, su grado de polimerización es indicado por un numeral griego, según el número de unidades de monómero que contiene; así, hablamos de dímeros, trímeros, tetrámero, pentámero y sucesivos. El término polímero designa una combinación de un número no especificado de unidades. De este modo, el trióximetileno, es el trímero del formaldehído, por ejemplo.
Si el número de unidades es muy grande, se usa también la expresión gran polímero. Por su origen se dividen en:
- Naturales: cuando se encuentran en la naturaleza (celulosa, caucho, resinas vegetales, etc.).

Ambar.
Es una resina fósil de plantas coníferas. Conocida desde la más remota antigüedad se utilizaba para la producción de objetos de ornamento con la técnica de grabado o de estampado a presión. Una de las primeras utilizaciones de la Baquelita ha sido la imitación del ámbar.

Celulosa.
La celulosa es uno de los muchos polímeros encontrados en la naturaleza. La madera, el algodón y la cuerda de cáñamo están constituidas de celulosa fibrosa.
La celulosa está formada por unidades repetidas del monómero glucosa.
Ocupa un lugar importante en la historia de los polímeros porque fue utilizada para hacer algunos de los primeros polímeros sintéticos, tales como el nitrato de celulosa, acetato de celulosa y rayón.

Cuerno.
Es un material orgánico compuesto de queratina (aprox. el 80%). Es termoplástico y se trabaja después de calentarlo en seco o por inmersión en agua hirviendo o con soluciones alcalinas. Después de haberlo ablandado se puede prensar, obteniendo objetos y láminas (cajas, botones, peines...).

Marfil.
Se obtiene de los colmillos de los animales y está constituido esencialmente por sales de calcio y otras substancias orgánicas. Se utilizaba antes de la invención de las materias plásticas para la fabricación de las teclas de los piano, mangos de los cuchillos, peines, bolas de billar...
 
Caseina.
La caseína es una proteina que se encuentra en la leche.
No es soluble en agua, pero si lo es en álcalis (amoniaco, bórax, aminas...).
- Artificiales o semisintéticos. Obtenidos por transformación química de polímeros naturales.
Nitrato de celulosa. CN. Termoplástico.

Celuloide.
Es la primera de la materia plásticas artificiales, inventadas por J.W. Hyatt mezclando nitrato de celulosa y alcanfor. Tiene multiples usos por su facil elaboración y coloración y por su gran resistencia y resiliencia.
Se puede cortar, laminar, plegar, perforar, estirar, tornear, estampar a presión, modelar calentándola con agua o aire caliente; se puede encolar y decorar en superficie. En cambio no se puede someter a inyección ni a compresión ni tampoco trabajarla con el extrusor, ya que se descompone.

Acetato de celulosa. CA. Termoplástico.
Como la Celuloide se obtiene mediante la modificación química de un polímero natural: la celulosa que es una de las substancias orgánicas más comunes en la naturaleza. El acetato de celulosa es la primera materia plástica estampada a inyección.
Tiene el aspecto de un polvo blanco y debido a su aspecto agradable se utiliza principalmente para la fabricación de objetos transparentes, translúcidos y opacos como las teclas para las máquinas de escribir y calculadoras, pulsadores, revestimiento de volantes para automóviles, empuñadura de cuchillos, pantallas, vidrios de relojes, partes de máscaras de protección, plumas, mangos de paraguas, juguetes etc...

Galatita. Termoplástico.
Uno de los primeros plásticos fue la galalita. Es una materia plástica natural de origen proteica obtenida de substancias orgánicas como la leche (caseina), cuerno o de productos vegetales como semillas de soja.
Fue obtenida en 1897 por Adolph Spitteler y W. Kirsche partiendo del suero de la leche al que se le añadían plastificantes y que luego se endurecía con formaldehido.
Conocida con el nombre comercial Galalith (Galalite en Italia y Erinoid en el Reino Unido) se presentaba con un aspecto similar al de la Celuloide o bien al marfil o al cuerno artificial.

Ebonita.
La ebonita es un material obtenido en el siglo pasado sometiendo la goma a un proceso de vulcanización. Algunos artículos fabricados con este material se expusieron en el 1851 en el Cristal Palace de Londres. Se trata de un compuesto a mitad de camino entre las materias plásticas autenticas y la goma natural.
Durante el proceso de vulcanización se introduce en la masa azufre (30-50%), obteniendo un compuesto que posee gran poder dieléctrico, buena resistencia a los productos químicos, una cierta dureza y rigidez hasta temperaturas de 50 oC y con un aspecto brillante.
Se utilizó en separadores de baterías eléctricas, plumas estilográficas, boquillas de pipas, de instrumentos musicales...
- Sintéticos: Obtenidos químicamente a partir de sustancias de bajo peso molecular para
formar monómeros y la subsiguiente polimerización de éstos (polietileno, poliésteres, etc.).

Baquelita.
Termoplástico.
En 1909 el químico L. H. Baekeland sintetizó un polímero a partir de moléculas de fenol y formaldehído. Este producto podía moldearse a medida que se formaba y resultaba duro al solidificar. No conducía la electricidad, era resistente al agua y los disolventes, pero fácilmente mecanizable. Se bautizó con el nombre de baquelita, el primer plástico totalmente sintético de la historia.

CARACTERISTICAS:
Excelente resistencia mecánica. Buenas propiedades eléctricas, elevado poder aislante y gran resistencia a la humedad. Resistente Difícilmente al inflamable.

USOS Y APLICACIONES:
Aislante eléctrico (maquinarias, motores eléctricos, radio ...) Aislamiento de alta tensión para transformadores. Soportes para carretes.

Lo que distingue a los polímeros de los materiales constituidos por moléculas de tamaño normal son sus propiedades mecánicas. En general, los polímeros tienen buenas resistencias mecánicas debido a la atracción entre sus grandes cadenas poliméricas.

Existen en moléculas de muy baja polaridad, generalmente en los hidrocarburos. Provienen de dipolos transitorios (como resultado de los movimientos de electrones, en cierto instante una porción de la molécula se vuelve ligeramente negativa, mientras que en otra región aparece una carga positiva equivalente). Estos dipolos producen atracciones electrostáticas muy débiles en moléculas de tamaño normal, pero en los polímeros, formados por miles de estas pequeñas moléculas, las fuerzas de atracción se multiplican llegando a ser enormes.